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CHAPTER

ONE

ABSTRACT

This document contains standardized definitions for several commonly used code verification test problems. These
definitions are intended to contain sufficient information to set up the test problem in a computational physics code.
These definitions are intended to be used in conjunction with exact solutions to these problems generated using Exact-
Pack, www.github.com/lanl/exactpack

To provide feedback, contact Scott Doebling, doebling@lanl.gov
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2 Chapter 1. Abstract



CHAPTER

TWO

THE NOH PROBLEM

2.1 Description

A numerical implementation of the Noh Problem involves a finite-domain restriction of the mathematically ideal,
infinite domain, spherically symmetric, infinite- strength shock impinging on a rigid wall. It consists of an inviscid,
non-heat conducting, compressible, polytropic gas, initialized with a uniform, spherically radially inward velocity,
𝑢𝑅,0. This problem tests a code’s ability to convert kinetic energy into internal energy.

The Noh problem was first published by William F. Noh in 1987 [Noh]. See also [Kamm].

Fig. 2.1: Initial configuration of the 1D and 2D Spherical Noh Problem.

2.2 Solution

Table 2.1: Problem solution at 𝑡fin = 0.6

𝑟 𝜌 𝑢𝑅 𝑝 𝑒

[cm] [g/cm 3] [cm/s] [dyn/cm 2] [erg/g]
𝑅 < 𝑅𝑠 = 0.2 64.0 0.0 21 1

3 1/2
𝑅 > 𝑅𝑠 = 0.2 [1 + (0.6/𝑅)]2 -1.0 (2/3)𝜌× 10−12 1 × 10−12
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2.3 Problem Parameters

Table 2.2: Parameters for the Noh problem.

𝑡fin 𝛾 𝜌0 𝑢0 𝑝0 𝐸0

[s] [-] [g/cm 3] [cm/s] [dyn/cm 2] [erg]
1D 0.6 5/3 1.0 𝑢𝑅,0 = −1.0 (2/3) × 10−12 1 × 10−12

2D 0.6 5/3 1.0 𝑢𝑟,0 = −𝑟/𝑅, (2/3) × 10−12 1 × 10−12

𝑢𝑧,0 = −𝑧/𝑅
3D 0.6 5/3 1.0 𝑢𝑥,0 = −𝑥/𝑅, (2/3) × 10−12 1 × 10−12

𝑢𝑦,0 = −𝑦/𝑅,
𝑢𝑧,0 = −𝑧/𝑅

2.4 Initial Conditions

Uniform and constant material density, pressure, and spherically radial velocity. States are related through the poly-
tropic (ideal gas) EOS: 𝑝 = (𝛾 − 1)𝜌𝑒, where, 𝛾 = 5/3 is the (constant) ratio of specific heats.

2.5 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain, defined below. Possible boundary conditions are:

Inner: 𝑅min, 𝑟min, 𝑧min : Symmetric

Outer: 𝑅max, 𝑟max, 𝑧max: Constant in time

2.6 Mesh

Region Boundaries1:

1D: 𝑅min = 0.0, 𝑅max = 1.2 cm

2D: (𝑟, 𝑧)min = 0.0, (𝑟, 𝑧)max = 1.2 cm

3D: (𝑥, 𝑦, 𝑧)min = 0.0, (𝑥, 𝑦, 𝑧)max = 1.2 cm

Mesh Resolutions:

1D spherical: 𝑁𝑅 = 24, 48, 96, 192, 384; ∆𝑅 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

2D cylindrical: 𝑁𝑟 = 𝑁𝑧 = 24, 48, 96, 192, 384; ∆𝑟 = ∆𝑧 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

3D Cartesian 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 24, 48, 96, 192; ∆𝑥 = ∆𝑦 = ∆𝑧 = 0.5, 0.025, 0.0125, 0.00625

2.7 Output

In ASCII comma- or space-delimited format,2 to include:

1 Here, 𝑅 = spherical radial coordinate, with 𝑅 = 𝑟2 + 𝑧2, where 𝑟 = cylindrical radial coordinate.
2 Sample output available upon request.
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1. Values of density, velocity, pressure, SIE as a function of position at 𝑡0 and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

2.8 Comparison Domain

1D: 𝑅 ∈ [0, 0.5]

2D: (𝑟, 𝑧) ∈ [0, 0.5] × [0, 0.5]

3D: (𝑥, 𝑦, 𝑥) ∈ [0, 0.5] × [0, 0.5] × [0, 0.5]

2.9 Results at 𝑡fin = 0.6s
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CHAPTER

THREE

THE SEDOV PROBLEM

3.1 Description

The Sedov Problem is a mathematical idealization of a shock generated via an explosion. It consists of spherically
symmetric flow of an inviscid, non-heat conducting, compressible, polytropic gas, driven by a single zone with non-
trivial initial energy [Kamm].

This problem tests a code’s ability to convert internal energy into kinetic energy and has a quasi-analytic, self-similar
solution that requires one numerical quadrature.

Fig. 3.1: Initial Configuration of the 1D and 2D Spherical Sedov problem.

3.2 Problem Parameters

Table 3.1: Parameters for the Sedov problem.

𝑡fin 𝛾 𝜌0 𝑢0 𝑝0 Internal Energy
[s] [-] [g/cm 3] [cm/s] [dyn/cm 2] [erg]
1.0 7/5 1.0 0.0 (2/5) × 10−12 1D: 0.851072

2D: 0.425536
3D: 0.106384
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3.3 Initial Conditions

Uniform and constant material density and velocity. Specific Internal Energy (SIE) in the single energetic zone as
shown in the SIE table below, elsewhere 10−12 erg/g, so that pressure and total energy equal values in the Paramters.
States are related through the polytropic (ideal gas) EOS: 𝑝 = (𝛾 − 1)𝜌𝑒, where, 𝛾 = 7/5 is the (constant) ratio of
specific heats.

Table 3.2: SIE [erg/g] in first zone gives the internal energy in the Parameters table.

D 24 48 96 192 384
1D 1.6254278 × 103 1.3003422 × 104 1.0402738 × 105 8.3221903 × 105 6.6577522 × 106

2D 1.0836185 × 103 8.6689482 × 103 6.9351586 × 104 5.5481269 × 105 4.4385015 × 106

3D 8.5107200 × 102 6.8085760 × 103 5.4468608 × 104 4.3574886 × 105

3.4 Boundary Conditions

Inner: 𝑅min, 𝑟min, 𝑧min : Symmetric

Outer: 𝑅max, 𝑟max, 𝑧max: Constant in time

3.5 Mesh

Region Boundaries1:

𝑅min = 0.0, 𝑅max = 1.2 cm; in 1D

(𝑟, 𝑧)min = 0.0, (𝑟, 𝑧)max = 1.2 cm; in 2D,

(𝑥, 𝑦, 𝑧)min = 0.0, (𝑥, 𝑦, 𝑧)max = 1.2 cm; in 3D

Mesh Resolutions:

1D spherical: 𝑁𝑅 = 24, 48, 96, 192, 384; ∆𝑅 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

2D cylindrical: 𝑁𝑟 = 𝑁𝑧 = 24, 48, 96, 192, 384; ∆𝑟 = ∆𝑧 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

3D Cartesian 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 24, 48, 96, 192; ∆𝑥 = ∆𝑦 = ∆𝑧 = 0.5, 0.025, 0.0125, 0.00625

3.6 Output

In ASCII comma- or space-delimited format,2 to include:

1. Values of density, velocity, pressure, SIE as a function of position at 𝑡0 and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

1 Here, 𝑅 = spherical radial coordinate, with 𝑅 = 𝑟2 + 𝑧2, where 𝑟 = cylindrical radial coordinate.
2 Sample output available upon request.
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3.7 Comparison Domain

1D: 𝑅 ∈ [0, 1.2]

2D: (𝑟, 𝑧) ∈ [0, 1.2] × [0, 1.2]

3D: (𝑥, 𝑦, 𝑧) ∈ [0, 1.2] × [0, 1.2] × [0, 1.2]

3.8 Results at 𝑡fin = 1.0
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CHAPTER

FOUR

COG-8 PROBLEM

4.1 Description

The Cylindrical Cog-8 Problem is a cylindrically symmetric configuration that couples the adiabatic expansion of a
compressible gas with radiation-diffusion having a specific heat flux. The initial state of the inviscid, polytropic gas
must be assigned numerically. This problem tests a code’s ability to resolve a simple, smooth multiphysics scenario.
This problem was originally given as one of a group of 22 formal similiarity solutions of th Euler compressible flow
equations which Cogesshall derived using Lie group theory [Coggeshall]. The particular solution corresponding to
the Cog-8 problems was analyzed in detail1 in the paper by Hendon and Ramsey [Hendon]. See also [Kamm].

Fig. 4.1: Initial configuration of the Cog-8 Problem

4.2 Solution

Of Coggeshall’s 22 similarity soltuions, the Cog-8 problem corresonds to a formal solution invariant under scale
transormations on 𝜌 and spatial scale transformations, along with radiation diffusion (or nonlinear heat conduction).
The solution contains five unspecified parameters: The gas constants, 𝛾 and, either 𝐶V or Γ = 𝐶V(𝛾 − 1), and
three arbitrary constants, 𝜅0, A and B, in Coggeshalls notation or 𝛼 = 𝐴 and 𝛽 = 𝐵 − 3, in Hendon and Ramsey’s
notation. The latter three parameters appear in the parameterization of the Rosseland mean opacity (or nonlinear heat
conduction), chosen to be of exponential form,

𝜅(𝜌, 𝑇 ) = 𝜅0𝜌
𝐴𝑇𝐵

1 Hendon and Ramsey show that, in general, a delta-function heat source term must be included to reproduce the complete solution, but not for
the case considered here.
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in Coggeshall’s notation, or,

𝜅(𝜌, 𝑇 ) = 𝜅0𝜌
𝛼𝑇 𝛽+3

in Hendon and Ramsey’s notation.

For a polytropic gas, with 𝑝 = (𝛾 − 1)𝜌𝑒 = 𝐶V(𝛾 − 1)𝜌𝑇 , and temperature-dependent Rosseland mean opacity,

𝜅 = 𝜅0𝜌
−1𝑇 3,

the Cog-8 problem has the closed-form solution2 given in the Solution table below.

Table 4.1: Solution to the Cylindrical
Cog-8 problem.

Physical Field Analytic Solution
𝜌 [g/cm 3] 𝜌0𝑡

−2

𝑢 [cm/s] 𝑟/𝑡

𝑒 [erg/g] 𝑇0𝑡
−4/3

4.3 Problem Parameters

Parameters for the problem considered here are listed in the Parameters table.

Table 4.2: Parameters for the Cog-8 problem.

𝑡init 𝑡fin 𝛾 𝐶V 𝜅0 𝛼 𝛽

[s] [s] [-] [erg/(g K)] [cm 2/g] [-] [-]
1.0 2.0 5/3 1.0 × 107 1.0 0 0

4.4 Initial Conditions

Spatially dependent material state over the entire domain. The initial values 𝜌0 and 𝑇0 are found by substituting 𝑡 = 1
into the Solution table. They are given in the Initial values table below. Note that this table is redunant for setting
up the problem. Setup only requires imposing the initial velocity, density and either the temperature or the specific
internal energy (SIE). The SIE is determined by the temperature via 𝑒 = 𝐶V𝑇 . The pressure is determined from the
other two variables, since 𝑝 = (𝛾− 1)𝜌𝑇 , but it was included in the table for completeness, and because it can be used
as a consistency check on input decks at the beginning of a calculation.

Table 4.3: Initial values of the Cog-8
Problem

Physical Field Analytic Solution
𝜌 [g/cm 3] 1.0
𝑇0 [K] 1.16045 × 104

𝑒 [erg/g] 1.16045 × 1011

𝑢 [cm/s] 𝑟
𝑝 [Mbar] 7.73633 × 103

2 See section III.A of the report by Hendon and Ramsey. This configuration corresponds to the parameters 𝜅 = 1, 𝛾 = 5/3,A = 0, and
𝛽 = −3 (or 𝜅 = 1, 𝛾 = 5/3, 𝐴 = 0, and 𝐵 = 0 in Coggeshall’s notation).
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4.5 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain, defined below. Possible boundary conditions are:

Inner: 𝑟min, 𝑧min : Symmetric

Outer: 𝑟max, 𝑧max: Constant in time

4.6 Mesh

Region Boundaries3:

1D: 𝑅min = 0.0, 𝑅max = 1.2 cm

2D: (𝑟, 𝑧)min = 0.0, (𝑟, 𝑧)max = 1.2 cm

Mesh Resolutions:

1D spherical: 𝑁𝑟 = 24, 48, 96, 192, 384; ∆𝑅 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

2D cylindrical: 𝑁𝑟 = 𝑁𝑧 = 24, 48, 96, 192, 384; ∆𝑟 = ∆𝑧 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

4.7 Output

In ASCII comma- or space-delimited format,4 to include:

1. Values of density, velocity, pressure, SIE as a function of position at 𝑡init and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

4.8 Comparison Domain

1D: 𝑅 ∈ [0, 0.5]

2D: (𝑟, 𝑧) ∈ [0, 0.5] × [0, 0.5]

4.9 Results at 𝑡fin = 0.6s

3 Here, 𝑅 = spherical radial coordinate, with 𝑅 = 𝑟2 + 𝑧2, where 𝑟 = cylindrical radial coordinate.
4 Sample output available upon request.

4.5. Boundary Conditions 13
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CHAPTER

FIVE

THE ESCAPE OF HE PRODUCTS (EHEP) PROBLEM

5.1 Description

The escape of HE products (EHEP) problem involves a one-dimensional rod of HE extending from the origin for a
length of 𝑥̃. To the left of the HE is a piston moving in the +𝑥 direction with velocity 𝑢𝑝. To the right of the HE is a
void.

At 𝑡 = 0, the detonation wave departs from the origin in the +𝑥 direction, and the piston begins to move and isentrop-
ically compresses the reaction products. When the detonation wave reaches 𝑥̃ the HE has all been consumed, and the
material begins to expand isentropically into the void region. At the same time, the arrival of the detonation wave at
an interface with lesser impedence to the right causes a rarefaction wave to be propagated from 𝑥̃ in the −𝑥 direction.
A bit later, this rarefaction wave impacts the piston and reflects back into the material. Thus there are five distinct
regions of behavior as the HE detonates and the reaction products spread.

The HE is assumed to be a polytropic ideal gas with adiabatic index 𝛾 = 3, C-J detonation velocity 𝐷, and heat of
reaction 𝑞. (The value 𝛾 = 3 is required to enable the derivation of the exact solution.) The unreacted HE and the
reacted HE are assumed to have the same material properties.

The EHEP problem was first published by Fickett and Rivard in 1974 [Fickett]. In 2002, [Dykema] published a
derivation of the characteristics of the exact solution in x-t space. A complete description of the problem, the exact
solution equations, and the solution algorithm is presented in [Doebling].

HE ( = 3) VOID
Detonation Wave

Piston

up

x
x0 x
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5.2 Problem Parameters

𝑡𝑓𝑖𝑛𝑎𝑙 = 5.0 𝜇s
𝛾 = 3

𝐷 = 0.85 cm/𝜇s

𝑞 = 0.04515625 cm2/𝜇s2

5.3 Mesh: 1D Cartesian

For a Lagrangian code, the mesh should be defined as indicated with the number of zones 𝑁𝑥 defined over the initial
HE region [0, 𝑥̃]. The void region need not be meshed. For an Eulerian or ALE code, the mesh should be entended
from 𝑥̃ to 𝑥̂ using the same dx values as in the HE region.

𝑥̃ = 1 cm
𝑥̂ = 5.0 cm

𝑁𝑥 = [50, 100, 200, 400, 800] over interval [0, 𝑥̃] cm
∆𝑥 = 0.02, 0.01, 0.005, 0.0025, 0.00125

5.4 Initial conditions

𝑝0 = 0.0

𝜌0 = 1.6 g/cm3

𝑒0 = 0.0

5.5 Boundary conditions

The left (−𝑥) boundary is being pushed by the piston at velocity 𝑢𝑝. The right (+𝑥) boundary of the problem is free
to expand.

𝑢𝑝 = 0.05 cm/𝜇s

5.6 Comparison Domain

The comparison doman is 𝑥 ∈ [0.0, 5.0] cm.

5.7 Outputs

Output should be provided in ASCII comma or space-delimited format, to include:

1. Values of density, velocity, pressure, and specific internal energy as a function of position at 𝑡 = 0 and 𝑡𝑓𝑖𝑛𝑎𝑙.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.
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5.8 Exact Solution plots

At time 𝑡 = 5.0 𝜇sec
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CHAPTER

SIX

GUDERLEY PROBLEM

6.1 Description

The Guderley Problem consists of a spherically symmetric, shocked flow that converges onto the origin, bounces
and reflects outward into the oncoming flow. The initial state of the inviscid, non-heat conducting polytropic gas is
uniform out to a specified radius, but spatially dependent beyond and must be evaluated numerically. This problem
tests a code’s ability to resolve spherically converging reflected shocked flow.

The Guderley Problem was first published by Guderley in 1942 [Guderley]. See also [Kamm].

Fig. 6.1: Initial configuration of Guderley Problem.

6.2 Problem Parameters

Table 6.1: Parameters for the Guderley problem.

𝑡𝑖𝑛𝑖𝑡 𝑡𝑓𝑖𝑛 𝛾 𝑅0 𝜌0 𝑢0 𝑝0 𝑒0
[s] [s] [-] [cm] [g/cm 3] [cm/s] [dyn/cm 2] [erg/g]
-1 0.5 3 1.0 1.0 0.0 2 × 10−12 1 × 10−12

6.3 Initial Conditions

Uniform, constant material density and velocity in the spherical region 0 ≤ 𝑅 < 𝑅0 according to the Parameters
table. States are related through the polytropic (ideal gas) EOS: 𝑝 = (𝛾 − 1)𝜌𝑒, where, 𝛾 = 3 is the (constant) ratio of
specific heats. For 𝑅 > 𝑅0, the initial state is evaluated numerically and must be assigned to the mesh.

19
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6.4 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain, defined below. Possible boundary conditions are:

Inner: 𝑅min, 𝑟min, 𝑧min : Symmetric

Outer: 𝑅max, 𝑟max, 𝑧max: Constant in time

6.5 Mesh

Region Boundaries1:

1D: 𝑅min = 0.0, 𝑅max = 3.0 cm

2D: (𝑟, 𝑧)min = 0.0, (𝑟, 𝑧)max = 3.0 cm

Mesh Resolutions:

1D spherical: 𝑁𝑅 = 60, 120, 240, 480, 960; ∆𝑅 = 0.05, 0.025, 0.0125, 0.00625, 0.003125

2D cylindrical: 𝑁𝑟 = 𝑁𝑧 = 60, 120, 240, 480, 960; ∆𝑟 = ∆𝑧 = 0.05, 0.025, 0.0125, 0.00625, 0.003125

6.6 Output

In ASCII comma- or space-delimited format,2 to include:

1. Values of density, velocity, pressure, SIE as a function of position at 𝑡0 and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

6.7 Comparison Domain

1D: 𝑅 ∈ [0, 1]

2D: (𝑟, 𝑧) ∈ [0, 1] × [0, 1]

1 Here, 𝑅 = spherical radial coordinate, with 𝑅 = 𝑟2 + 𝑧2, where 𝑟 = cylindrical radial coordinate.
2 Sample output available upon request.
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6.8 Results at 𝑡fin = 0.6s
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CHAPTER

SEVEN

1D JWL RIEMANN PROBLEMS

7.1 Description

1D JWL Riemann Problems are finite-dimensional restrictions of mathematically ideal, infinite domain shock tube
experiments with materials described by the JWL EOS. At 𝑡 = 0, the states are constant and uniform and are separated
by a massless interface. The removal of the interface leads to the evolution of the self-similar solution, consisting of
some combination of shock, contact, and rarefaction waves.

Fig. 7.1: Initial geometetry of the 1D JWL Riemann problems.

7.2 Problem Parameters

The tests numbers in the parameter tables below correspond to the following tests [Kamm],

1. Shyue shock tube: A shock tube problem with the cannonical rarefaction-contact-shock structure witha a JWL
EOS for TNT [Shyue].

2. Lee shock tube:: A shock tube problem with a shock-contact-rarefaction structure with a JWL EOS for LX-17
[Lee].

Table 7.1: Global parameters
for the JWL Riemann prob-
lems.

Test 𝑥𝑖𝑛𝑡 𝑡𝑓𝑖𝑛 JWL
[cm] [𝜇s] EOS

1 50.0 12.0 #1
2 50.0 20.0 #2
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Table 7.2: Left and Right parameters for the JWL Riemann prob-
lems.

𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅
[g/cm 3] [cm/𝜇s] [Mbar] [g/cm 3] [cm/𝜇s] [Mbar]
1.7 0.0 10.0 1.0 0.0 0.5
0.9525 0.0 1.0 3.810 0.0 2.0

7.3 Initial conditions

Uniform and constant material density, pressure, and velocity on each side of the initial interface (x= xint). Other
states are related through the JWL equation of state, which can be expressed in the general Mie-Grüneissen form
shown below, with the JWL EOS paramters given in the table below1.

𝑝 = 𝑝𝑟𝑒𝑓 (𝜌) + Γ(𝜌)𝜌[𝑒− 𝑒𝑟𝑒𝑓 (𝜌)]

with

Γ(𝜌) = Γ0

𝑝𝑟𝑒𝑓 (𝜌) = 𝐴 exp(𝑅1𝜌0/𝜌) + 𝐵 exp(−𝑅2𝜌0/𝜌)

and,

𝑒𝑟𝑒𝑓 (𝜌) = [𝐴/(𝑅1𝜌0)] exp(−𝑅1𝜌0/𝜌) + [𝐵/(𝑅2𝜌0)] exp(−𝑅2𝜌0/𝜌) − 𝑒0

Table 7.3: JWL EOS parameters for the 1D JWL Riemann problems.

JWL Material 𝜌0 𝑒0 Γ0 𝐴 𝐵 𝑅1 𝑅2

EOS [g/cm 3] [Mbar-cm 3/g] [-] [Mbar] [Mbar] [-] [-]
#1 TNT 1.84 1.7 0.25 8.545 0.205 4.6 1.35
#2 LX-17 1.905 0.9525 0.8938 632.1 -0.04472 11.3 1.13

7.4 Boundary conditions

Left/right: 𝑥min, 𝑥max: Constant in time

Top/Bottom: 𝑦min, 𝑦max: Reflective

7.5 Mesh

For all problems, 𝑥min = 0.0 and 𝑥max = 100.0 cm; in 2D, 𝑦min = 0.0, 𝑦max = 20.0 cm.

1D: 𝑁𝑥 = 50, 100, 200, 400, 800

2D: (𝑁𝑥, 𝑁𝑦) = (50,10), (100,20), (200,40), (400,80), (800,160)

1 The pressures developed in these tests may not be consistent with realistic problems.
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7.6 Output

In ASCII comma- or space-delimited format2, to include:

1. Values of density, velocity, pressure, SIE as a function of position at 𝑡0 and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

7.7 Comparison Domain

1D: 𝑥 ∈ [0, 100]

2D: (𝑥, 𝑦) ∈ [0, 100] × [0, 20]

7.8 Exact Solutions at 𝑡fin,0 = 12 and 𝑡fin,1 = 20𝜇s

The exact solutions at 𝑡fin for both JWL Riemann problems are plotted below:

0 20 40 60 80 100
position

0

1

2

3

4

5
Riemann JWL: Lee at t = 20s

density (×1)

pressure (×1)

velocity (×1)

2 Sample output available upon request.
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0 20 40 60 80 100
position

0

2

4

6

8 Riemann JWL: Shyue at t = 12s
density (×1)
pressure (×1)
velocity (×1)
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CHAPTER

EIGHT

KENAMOND PROBLEM #1

8.1 Description

The Kenamond High Explosive Problem Set is a series of problems designed to test the burn table solution (HE light
times) generated for programmed burn simulations. The suite of test problems has exact solutions in 2D and 3D
[Kenamond].

It should be understood that these burn time calculations are purely geometry-based solutions. They do not account
for HE behaviors such as shock formation time, inert boundary behaviors or behavior at boundaries between two HEs.

The Kenamond HE Problem 1 is used to test a code’s ability to calculate burn tables for an unobstructed line-of-sight,
single-point initiation of a single HE region. The general problem is described as follows:

An infinite medium of a single HE with constant detonation velocity, 𝐷, is ignited at time 𝑡 = 𝑡𝑑 by a
single point detonator located at 𝑥⃗ = 𝑥⃗𝑑. The calculated burn-time solution should depend only on these
three values. The specific values used in the verification calculation are specified in the Parameters table
in the Problem Parameters section.

A Cartesian mesh is used for the verification calculation. Details are provided in the Mesh section. The
mesh is not equally spaced in all directions, which highlights the truncation errors in a given solution
method.

Fig. 8.1: Initial configuration of 2D and 3D Kenamond HE Problem 1.

8.2 Solution

The HE light time solution for spherical propagation at the specified detonation velocity, ignition time and detonation
location is independent of the inital state parameters specified for the HE material and depends only on these three
quantities. The solution for the specific problem considered is

𝑡(𝑥⃗) = ||𝑥⃗||
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8.3 Problem Parameters

Table 8.1: Parameters for the Kenamond HE
Problem 1

𝐷 𝑡𝑑 𝑥⃗𝑑 𝑢0

[cm/𝜇s] [𝜇s] [cm] [cm/𝜇s]
1.0 0 2D:(0.0,0.0) 0.0

3D:(0.0,0.0,0.0)

8.4 Initial Conditions

Uniform and constant HE detonation velocity1. Specified detonation location and ignition time. No initial material
velocity. Uniform and constant material density and pressure. JWL EOS for HE materials.

For verification purposes, the specific HE used is PBX-95012. JWL EOS parameters for PBX-9501 are shown in the
HE parameters table below [Dobratz].

Table 8.2: HE parameters for the Kenamond HE Problem 1

𝜌0 𝑃 𝐷 𝐸0 Γ 𝐴 𝐵 𝐶 𝑅1 𝑅2 𝜔
[g/cm3] [Mbar] [cm/𝜇s] [Mbar] [-] [Mbar] [Mbar] [Mbar] [-] [-] [-]
1.840 0.370 0.88 0.1020 2.851 8.524 0.1802 0.01207 4.55 1.30 0.38

8.5 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain, defined below3. Possible boundary conditions are:

Inner: 𝑥min, 𝑦min, 𝑧min : Symmetric

Outer: 𝑥max, 𝑦max, 𝑧max: Free

8.6 Mesh

Region Boundaries:

2D: 𝑥min = 𝑦min = 0.0, 𝑥max = 𝑦max = 10.0 cm

3D: 𝑥min = 𝑦min = 𝑧min = 0.0, 𝑥max = 𝑦max = 𝑧max = 10.0 cm

Mesh Resolutions:

2D Cartesian:

𝑁𝑥 = 20, 40, 80, 160, 320; ∆𝑥 = 0.5, 0.25, 0.125, 0.0625, 0.03125 cm

𝑁𝑦 = 40, 80, 160, 320, 640; ∆𝑦 = 0.25, 0.125, 0.0625, 0.03125, 0.015625 cm

1 The detonation velocity used for the prescribed problem is not thermodynamically consistent with the detonation velocity of PBX-9501. The
prescribed detonation velocity was chosen to simplify the solution.

2 HE light times should not be dependent on HE material parameters, only the detonation velocity.
3 Boundary conditions should not affect the burn time solution.
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3D Cartesian:

𝑁𝑥 = 𝑁𝑧 = 20, 40, 80, 160; ∆𝑥 = ∆𝑧 = 0.5, 0.25, 0.125, 0.0625 cm

𝑁𝑦 = 40, 80, 160, 320; ∆𝑦 = 0.25, 0.125, 0.0625, 0.03125 cm

8.7 Output

In ASCII comma- or space-delimited format4, to include:

1. Burn time as a function of position.

8.8 Comparison Domain

2D: (𝑥, 𝑦) ∈ [0.0, 10.0] × [0.0, 10.0]

3D: (𝑥, 𝑦, 𝑧) ∈ [0.0, 10.0] × [0.0, 10.0] × [0.0, 10.0]

No simulation time steps are necessary for this calculation, since the burn times are calculated at the beginning of a
run. One time step may be necessary in a particular code to obtain the desired output.

4 Sample output available upon request.
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8.9 Exact Solution
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CHAPTER

NINE

KENAMOND PROBLEM #2

9.1 Description

The Kenamond High Explosive Problem Set is a series of problems designed to test the burn table solution (HE light
times) generated for programmed burn simulations. The suite of test problems has exact solutions in 2D and 3D
[Kenamond].

It should be understood that these burn time calculations are purely geometry-based solutions. They do not account
for HE behaviors such as shock formation time, inert boundary behaviors or behavior at boundaries between two HEs.

The Kenamond HE Problem 2 is used to test a code’s ability to calculate burn tables for an unobstructed line-of-sight,
multi-point initiation of a region composed of two HE materials with different detonation velocities. The problem is
described as follows:

An HE sphere of radius 𝑅 centered at the origin with constant detonation velocity 𝐷1 is surrounded by
an infinite medium of a second HE with constant detonation velocity 𝐷2. The specific values used for
these three quantities in the verification calculation are specified in the Parameters table in the Problem
Parameters section. Five point detonators located at 𝑥⃗ = 𝑥⃗𝑑𝑖

are ignited at times 𝑡 = 𝑡𝑑𝑖
. The detonators,

which are located on the 𝑦-axis in the 2D test and on the 𝑧-axis in the 3D test, are specified in the Detonator
specifications table in the Problem Parameters section.

An (𝑟, 𝜃) mesh is used for the 2D verification calculation. An (𝑟, 𝜃, 𝜑) mesh is used for the 3D test. Details
are provided in the Mesh section.

Fig. 9.1: Initial configuration of 2D Kenamond HE Problem 2. The 3D problem is revolved to form a quarter of a
sphere.
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9.2 Solution

The HE light time solution is independent of the initial state parameters specified for the HE material and depends
only on the specified detonation velocities, ignition times and detonator locations.

2D Specific Solution: For the specific 2D case considered, the solution at the point 𝑝 = (𝑥, 𝑦) is as follows:

𝑡(𝑝) = min(𝑡1, 𝑡2,max(𝑡3, 𝑡4), 𝑡5, 𝑡6)

where,

𝑡1(𝑝) =
√︀

𝑥2 + (𝑦 − 10)2 + 2

𝑡2(𝑝) =
√︀
𝑥2 + (𝑦 − 5)2 + 1

𝑡3(𝑝) =

√︀
𝑥2 + 𝑦2

2

𝑡4(𝑝) =
√︀
𝑥2 + 𝑦2 − 1.5

𝑡5(𝑝) =
√︀
𝑥2 + (𝑦 + 5)2 + 1

𝑡6(𝑝) =
√︀

𝑥2 + (𝑦 + 10)2 + 2

3D Specific Solution: For the specific 2D case considered, the solution at the point 𝑝 = (𝑥, 𝑦, 𝑧) is as follows:

𝑡(𝑝) = min(𝑡1, 𝑡2,max(𝑡3, 𝑡4), 𝑡5, 𝑡6)

where,

𝑡1(𝑝) =
√︀
𝑥2 + 𝑦2 + (𝑧 − 10)2 + 2

𝑡2(𝑝) =
√︀
𝑥2 + 𝑦2 + (𝑧 − 5)2 + 1

𝑡3(𝑝) =

√︀
𝑥2 + 𝑦2 + 𝑧2

2

𝑡4(𝑝) =
√︀
𝑥2 + 𝑦2 + 𝑧2 − 1.5

𝑡5(𝑝) =
√︀
𝑥2 + 𝑦2 + (𝑧 + 5)2 + 1

𝑡6(𝑝) =
√︀
𝑥2 + 𝑦2 + (𝑧 + 10)2 + 2

The regions in the figure above are labeled by the time solution valid in that region.

9.3 Problem Parameters

Table 9.1: Parameters for the Kenamond
HE Problem 2

𝑅 𝐷1 𝐷2 𝑢0

[cm] [cm/𝜇s] [cm/𝜇s] [cm/𝜇s]
3.0 2.0 1.0 0.0
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Table 9.2: Detonator specifications (in
Cartesian coordinates) for the Kenamond
HE Problem 2

Detonator 𝑡𝑑𝑖
𝑥⃗𝑑𝑖

(𝑑𝑖) [𝜇s] [cm]
1 2.0 2D: (0.0, 10.0)

3D: (0.0, 0.0, 10.0)
2 1.0 2D: (0.0, 5.0)

3D: (0.0, 0.0, 5.0)
3 0.0 2D: (0.0, 0.0)

3D: (0.0, 0.0, 0.0)
4 1.0 2D: (0.0, -5.0)

3D: (0.0, 0.0, -5.0)
5 2.0 2D: (0.0, -10.0)

3D: (0.0, 0.0, -10.0)

9.4 Initial Conditions

Uniform and constant HE detonation velocity1. Specified detonation locations and ignition times. No initial material
velocity. Uniform and constant material density and pressure. JWL EOS for HE materials.

For verification purposes, the specific HEs used are PBX-9501 (HE1) and Comp B (HE2)2. JWL EOS parameters for
PBX-9501 and Comp B are shown in the HE parameters below [Dobratz].

Table 9.3: HE parameters for the Kenamond HE Problem 2.

𝜌0 𝑃 𝐷 𝐸0 Γ 𝐴 𝐵 𝐶 𝑅1 𝑅2 𝜔
[g/cm3] [Mbar] [cm/𝜇s] [Mbar] [-] [Mbar] [Mbar] [Mbar] [-] [-] [-]
1.840 0.370 0.88 0.1020 2.851 8.524 0.1802 0.01207 4.55 1.30 0.38
1.717 0.295 0.798 0.0850 2.706 5.242 0.07678 0.01082 4.20 1.10 0.34

9.5 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain, defined below3. Possible boundary conditions are:

Inner: 𝑟min: Fixed, 𝜃min: Symmetric, 𝜑min: Fixed

Outer: 𝑟max: Free, 𝜃max: Symmetric, 𝜑max: Fixed

9.6 Mesh

Region Boundaries4:

1 The detonation velocities used for the prescribed problem are not thermodynamically consistent with the detonation velocities of PBX-9501
and Comp B. The prescribed detonation velocities were chosen to simplify the solution.

2 He light times should not be dependent on HE material parameters, only the detonation velocity.
3 Boundary conditions should not affect the burn time solution.
4 𝑟 represents the polar radius in 2D and the spherical radius in 3D. 𝜃 represents the azimuthal angle in both 2D and 3D. 𝜑 represents the polar

angle in 3D.
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2D: 𝑟min = 0.0 cm, 𝜃min = −𝜋/2 radians; 𝑟max = 10.0 cm, 𝜃max = 𝜋/2 radians

3D: 𝑟min = 0.0 cm, 𝜃min = 0.0 radians, 𝜑min = 0.0 radians; 𝑟max = 10.0 cm, 𝜃max = 𝜋/2 radians, 𝜑max = 𝜋 radians

Mesh Resolutions:

2D Polar:

𝑁𝑟 = 40, 80, 160, 320; ∆𝑟 = 0.25, 0.125, 0.0625, 0.03125 cm

𝑁𝜃 = 64, 128, 256, 512; ∆𝜃 = 𝜋/64, 𝜋/128, 𝜋/256, 𝜋/512 radians

3D Spherical:

𝑁𝑟 = 40, 80, 160; ∆𝑟 = 0.25, 0.125, 0.0625 cm

𝑁𝜃 = 8, 16, 32; ∆𝜃 = 𝜋/16, 𝜋/32, 𝜋/64 radians

𝑁𝜑 = 64, 128, 256; ∆𝜑 = 𝜋/64, 𝜋/128, 𝜋/256 radians

9.7 Output

In ASCII comma- or space-delimited format5, to include:

1. Burn time as a function of position.

9.8 Comparison Domain

2D: (𝑟, 𝜃) ∈ [0.0, 10.0] × [−𝜋/2, 𝜋/2]

3D: (𝑟, 𝜃, 𝜑) ∈ [0.0, 10.0] × [0.0, 𝜋/2] × [0.0, 𝜋]

No simulation time steps are necessary for this calculation, since the burn times are calculated at the beginning of a
run. One time step may be necessary in a particular code to obtain the desired output.

5 Sample output available upon request.
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9.9 Exact Solution
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CHAPTER

TEN

KENAMOND PROBLEM #3

10.1 Description

The Kenamond High Explosive Problem Set is a series of problems designed to test the burn table solution of HE
light times generated for programmed burn simulations. The suite of test problems has exact solutions in 2D and 3D
[Kenamond].

It should be understood that these burn time calculations are purely geometry-based solutions. They do not account
for HE behaviors such as shock formation time, inert boundary behaviors or behavior at boundaries between two HEs.

The Kenamond HE Problem 3 is used to test a code’s ability to calculate burn tables for a single-point initiation of a
single HE region surrounding an inert region. The problem is described as follows:

An infinite medium of a single HE with constant detonation velocity, 𝐷, surrounds an inert obstacle of
radius, 𝑅, centered at the origin. A single point detonator located at 𝑥⃗𝑑 is ignited at time 𝑡 = 𝑡𝑑. The
detonator is located on the y-axis in the 2D test and on the z-axis in the 3D test. The calculated burn-time
solution should depend only on these four values. The specific values used in the verification calculation
are specified in the Parameters table in the Problem Parameters section.

An (𝑟, 𝜃) mesh is used for the 2D test. An (𝑟, 𝜃, 𝜑) mesh is used for the 3D test. Details are provided in
the Mesh section.

Fig. 10.1: Initial configuration of 2D Kenamond HE Problem 3. The 3D problem is revolved to form a quarter of a
sphere.

37



Standardized Definitions for Code Verification Test Problems, Release 1.0

10.2 Solution

The HE light time solution is independent of the inital state parameters specified for the HE material and depends only
on the size of the inert object, the specified detonation time and position, and the HE detonation velocity. The HE
material can be divided into two solution regions: the material in the line-of-sight of the detonator and the material
in the shadow of the inert object. See the second figure below, where 𝑡1 designates the line-of-sight region and 𝑡2
designates the shadow region.

Fig. 10.2: The two solution regions for the Kenamond HE Problem 3. 𝑡1 designates the line-of-sight region and 𝑡2
designates the shadow region.

2D Specific Solution: For the specific 2D case considered, the solution at the point 𝑝 = (𝑥, 𝑦) is as follows:

𝑡(𝑝) =

{︂
𝑡1 if 𝜃 ≤ 0
𝑡2 if 𝜃 > 0

where,

𝑡1(𝑝) =

√︀
𝑥2 + (𝑦 − 5)2

2

𝑡2(𝑝) = 2 +
3

2
𝜃 +

√︀
𝑥2 + 𝑦2 − 9

2

𝜃 = 𝜋 − arccos

(︃
− 𝑦√︀

𝑥2 + 𝑦2

)︃
− arccos

(︃
3√︀

𝑥2 + 𝑦2

)︃
− arccos

(︂
3

5

)︂
3D Specific Solution: In the 3D problem, the 2D y-axis becomes the 3D z-axis, while the 2D x-axis becomes the
cylindrical r-axis (𝑟2 = 𝑥2 + 𝑦2). For the specific 3D case considered, the solution at the point 𝑝 = (𝑥, 𝑦, 𝑧) is as
follows:

𝑡(𝑝) =

{︂
𝑡1 if 𝜃 ≤ 0
𝑡2 if 𝜃 > 0
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where,

𝑡1(𝑝) =

√︀
𝑥2 + 𝑦2 + (𝑧 − 5)2

2

𝑡2(𝑝) = 2 +
3

2
𝜃 +

√︀
𝑥2 + 𝑦2 + 𝑧2 − 9

2

𝜃 = 𝜋 − arccos

(︃
− 𝑧√︀

𝑥2 + 𝑦2 + 𝑧2

)︃
− arccos

(︃
3√︀

𝑥2 + 𝑦2 + 𝑧2

)︃
− arccos

(︂
3

5

)︂

10.3 Problem Parameters

Table 10.1: Parameters for the Kenamond HE Problem 3
(Detonator positions are given in Cartesian coordinates)

𝑅 𝐷 𝑡𝑑 𝑥⃗𝑑 𝑢0

[cm] [cm/𝜇s] [𝜇s] [cm] [cm/𝜇s]
3.0 2.0 0.0 2D: (0.0,5.0) 0.0

3D: (0.0,0.0,5.0)

10.4 Initial Conditions

Uniform and constant HE detonation velocity1. Specified detonation location and ignition time. No initial material
velocity. Uniform and constant material density and pressure. JWL EOS for HE materials.

For verification purposes, the specific HE used is PBX-95012. JWL EOS parameters for PBX-9501 are shown in the
HE parameters table below [Dobratz].

Table 10.2: HE parameters for the Kenamond HE Problem 3

𝜌0 𝑃 𝐷 𝐸0 Γ 𝐴 𝐵 𝐶 𝑅1 𝑅2 𝜔
[g/cm3] [Mbar] [cm/𝜇s] [Mbar] [-] [Mbar] [Mbar] [Mbar] [-] [-] [-]
1.840 0.370 0.88 0.1020 2.851 8.524 0.1802 0.01207 4.55 1.30 0.38

10.5 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain, defined below3. Possible boundary conditions are:

Inner: 𝑟min : Fixed, 𝜃min : Symmetric, 𝜑min : Fixed

Outer: 𝑟max : Free, 𝜃max : Symmetric, 𝜑max: Fixed

1 The detonation velocity used for the prescribed problem is not thermodynamically consistent with the detonation velocity of PBX-9501. The
prescribed detonation velocity was chosen to simplify the solution.

2 He light times should not be dependent on HE material parameters, only the detonation velocity.
3 Boundary conditions should not affect the burn time solution.
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10.6 Mesh

Region Boundaries4:

2D: 𝑟min = 0.0 cm, 𝜃min = −𝜋/2 radians; 𝑟max = 10.0 cm, 𝜃max = 𝜋/2 radians

3D: 𝑟min = 0.0 cm, 𝜃min = 0.0 radians, 𝜑min = 0.0 radians; 𝑟max = 10.0 cm, 𝜃max = 𝜋/2 radians, 𝜑max = 𝜋 radians

Mesh Resolutions:

2D Polar:

𝑁𝑟 = 40, 80, 160, 320; ∆𝑟 = 0.25, 0.125, 0.0625, 0.03125 cm

𝑁𝜃 = 64, 128, 256, 512; ∆𝜃 = 𝜋/64, 𝜋/128, 𝜋/256, 𝜋/512 radians

3D Spherical:

𝑁𝑟 = 40, 80, 160; ∆𝑟 = 0.25, 0.125, 0.0625 cm

𝑁𝜃 = 8, 16, 32; ∆𝜃 = 𝜋/16, 𝜋/32, 𝜋/64 radians

𝑁𝜑 = 64, 128, 256; ∆𝜑 = 𝜋/64, 𝜋/128, 𝜋/256 radians

10.7 Output

In ASCII comma- or space-delimited format5, to include:

1. Burn time as a function of position.

10.8 Comparison Domain

2D: (𝑟, 𝜃) ∈ [0.0, 10.0] × [−𝜋/2, 𝜋/2] 3D: (𝑟, 𝜃, 𝜑) ∈ [0.0, 10.0] × [0.0, 𝜋/2] × [0.0, 𝜋]

No simulation time steps are necessary for this calculation, since the burn times are calculated at the beginning of a
run. One time step may be necessary in a particular code to obtain the desired output.

4 𝑟 represents the polar radius in 2D and the spherical radius in 3D. 𝜃 represents the azimuthal angle in both 2D and 3D. 𝜑 represents the polar
angle in 3D.

5 Sample output available upon request.
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10.9 Exact Solution
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CHAPTER

ELEVEN

KIDDER PROBLEM

11.1 Description

The Kidder Guassian Density problem is a spherically symmetric configuration that invovles the smooth, adiabatic
compression follwed by expansion of a compressible gas. The initial state of the inviscid, polytropic gas must be
assigned numerically. This problem tests a code’s ability to resolve smooth adiabatic flow from compression, through
to stagnation, to expansion.

The Kidder problem was first published by Kidder in in 1974 [Kidder]. Ramsey, et al. derives the general solution for
this class of Gaussian density problems, provides computational results and analysis along with practical advice on
setting up this problem [Ramsey]. See also [Kamm].

Fig. 11.1: Initial 1D and 2D configurations of the Kidder Gaussian Density problem.

11.2 Solution

Under the assumptions of a polytropic gas, with 𝑝 = (𝛾 − 1)𝜌𝑒, and given the Initial and Boundary Conditions
described below. The Kidder Gaussian Density problem admits the closed-form solution shown in the Solution table.
The corresponding problem parameters are given in Run parameters table.

Table 11.1: Solution to the Kidder Problem.

Physical Field Analytic Solution
𝜌 [g/cm 3] 2(1 + 𝑡2)−3/2 exp[−𝑟2/(1 + 𝑡2)]
𝑢 [cm/s] 𝑟𝑡/(1 + 𝑡2)
𝑒 [erg/g] (3/4)/(1 + 𝑡2)
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11.3 Problem Parameters

The following table gives the constant parameters for Kidder problem. The Initial values table contains the initial
distribution of the physical fields, found by substituting 𝑡 = −1 into the exact solution given in the Solution table
above

Table 11.2: Run parameters for the Kidder Problem.

𝑡𝑖𝑛𝑖𝑡 𝑡𝑓𝑖𝑛,0 𝑡𝑓𝑖𝑛,1 𝛾
[s] [s] [s] [-]
1 0 1 5/3

11.4 Initial Conditions

Spatially dependent material state over the entire domain, determined by the anlytic solution. Substituting 𝑡 = −1 into
the solutions shown in the solution gives the table below. Note that initial density, velocity and energy are specified as
a function of radius over the range, 𝑟 ∈ [0, 3]. The initial pressure profile in the table was obtained from the solutions
for 𝛾, 𝜌 and e in solution using the formula 𝑝 = (𝛾 − 1)𝜌𝑒. Note that this table is redundant, in that the pressure need
not be specified, however it was included for completeness and because it is sometimes used to test of consistency of
the input deck at the first time step.

Table 11.3: Initial values for the Kidder
Problem.

Physical Field Initial Distribution
𝑟𝑖𝑛𝑖𝑡 [cm] 𝑟𝑖𝑛𝑖𝑡 ∈ [0, 3] cm
𝜌𝑖𝑛𝑖𝑡 [g/cm 3] exp[−𝑟2/2]
𝑢𝑖𝑛𝑖𝑡 [cm/s] −𝑟/2
𝑒𝑖𝑛𝑖𝑡 [erg/g] 3/8 (Uniform)
𝑝𝑖𝑛𝑖𝑡 [erg/g] (1/4) exp[−𝑟2/2]

11.5 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain defined below. Possible boundary conditions are:

Inner: 𝑅min, 𝑟min, 𝑧min : Symmetric

Outer: 𝑅max, 𝑟max, 𝑧max: Constant in time

11.6 Mesh

Region Boundaries1:

𝑅min = 0.0, 𝑅max = 3.0 cm; in 1D

(𝑟, 𝑧)min = 0.0, (𝑟, 𝑧)max = 3.0 cm; in 2D,

Mesh Resolutions:
1 Here, 𝑅 = spherical radial coordinate, with 𝑅 = 𝑟2 + 𝑧2, where 𝑟 = cylindrical radial coordinate.
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1D spherical: 𝑁𝑅 = 60, 120, 240, 480, 960; ∆𝑅 = 0.5, 0.025, 0.0125, 0.00625, 0.003125;

2D cylindrical: 𝑁𝑟 = 𝑁𝑧 = 60, 120, 240, 480, 960; ∆𝑟 = ∆𝑧 = 0.5, 0.025, 0.0125, 0.00625, 0.003125

11.7 Output

In ASCII comma- or space-delimited format,2 to include:

1. Values of density, velocity, pressure, SIE as a function of position at 𝑡0, 𝑡fin,0 and 𝑡fin,1.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

11.8 Comparison Domain

1D: 𝑅 ∈ [0, 1]

2D: (𝑟, 𝑧) ∈ [0, 1] × [0, 1]

2 Sample output available upon request.
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CHAPTER

TWELVE

1D PLASMA DIFFUSION PROBLEMS

12.1 Description

These 1D Riemann Problems are finite-dimensional restrictions of mathematically ideal, infinite domain plasmas.
They have two materials in Cartesian geometry separated by a massless interface. At 𝑡 = 0, the plasmas are uniform
and in pressure equilibrium. The removal of the interface leads to the evolution of the self-similar solution, consisting
of a front of dense plasma diffusing into lighter plasma, and the lighter plasma diffusing throughout the dense material.

Fig. 12.1: Initial geometry of Cartesian mass diffusion problems.

12.2 Problem Parameters

The parameters in the tables below correspond to the following tests [Molvig],

1. Gold Plasma: ICF plasma conditions relevant to heavy metal pushers used in double shell capsule designs.
These conditions were those typically condisdered during the theoretical development of the diffusion model in
Ref [Molvig].

2. Aluminum Plasma: ICF relevant conditions used to verify the theory against kinetic simulations (particle-in-
cell method with a binary collision model). This case also tests the model at different plasma conditions.

Table 12.1: Global parameters for the 1D mass-diffusion prob-
lems

Test 𝑥int 𝑡fin 𝑢 P T
[cm] [s] [cm/s] [erg/cm 3] [eV]

1 0.0050 2 × 10−9 0 2.41 × 1015 5000
2 0.0050 6 × 10−9 0 3.74 × 1016 4000
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Table 12.2: Parameters for left and right plasma sections

Test 𝜌L 𝜌R 𝑍L 𝑍R 𝑚L 𝑚R

[g/cm 3] [g/cm 3] [e] [e] [amu] [amu]
1 1.26 0.5 77 1 197 2
2 18.7 9.7 13 1 27 2

12.3 Initial conditions

The material velocity, pressure and temperature are uniform and constant across the initial interface 𝑥 = 𝑥int. The
density is uniform and constant on each side of the interface. Other states are related through the polytropic equation
of state for a perfect gase: 𝑝 = (𝛾 − 1)𝜌𝑒, where, 𝛾 = 5/3, is the (constant) ratio of specific heats.

12.4 Boundary conditions

Left/right: 𝑥min, 𝑥max: Constant in time

12.5 Mesh

Region Boundaries:

For all problems, 𝑥min = 0.0000, 𝑥max = +0.0100 cm.

Mesh Resolutions:

1D: 𝑁𝑥 = 25, 50, 100, 200, 400; ∆𝑥 = 0.000400, 0.000200, 0.000100, 0.000050, 0.000025 cm

12.6 Output

In ASCII comma- or space-delimited format1, to include:

1. Values of species density, velocity and pressure as a function of position at 𝑡0 and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

12.7 Comparison Domain

1D: 𝑥 ∈ [0.0000, 0.0100]

12.8 Test problem 1: results at 𝑡fin = 2× 10−9s

This figure shows the interpenetration of a gold plasma (black line) into a deuterium plasma (red line) at 𝑡 = 2×10−9s,
and corresponds to Fig. 2 of Ref. [Molvig]. The initial deuterium density profile is outlined (dotted red line), as well

1 Sample output available upon request.
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as the final gold front position (dotted black line). This test case produces a mixed region extending from 𝑥 ≈ 0.0020
cm to 𝑥 ≈ 0.0073 cm

12.9 Test problem 2: results at 𝑡fin = 6× 10−9s

This figure shows the interpenetration of an aluminum plasma (black line) into a deuterium plasma (red line) at
𝑡 = 6×10−9s, and corresponds to Fig. 4 of Ref. [Molvig]. The initial deuterium density profile is outlined (dotted red
line), as well as the final aluminum front position (dotted black line). This test case produces a mixed region extending
from 𝑥 ≈ 0.0020 cm to 𝑥 ≈ 0.0073 cm

12.9. Test problem 2: results at 𝑡fin = 6 × 10−9s 49
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CHAPTER

THIRTEEN

1D RIEMANN PROBLEMS

13.1 Description

1D Riemann Problems are finite-dimensional restrictions of mathematically ideal, infinite domain shock tube experi-
ments. They are in Cartesian geometry with two materials separated by a massless interface. At 𝑡 = 0, the states are
constant and uniform. The removal of the interface leads to the evolution of the self-similar solution, consisting of
some combination of shock, contact, and rarefaction waves.

Fig. 13.1: Initial geometry of Cartesian Riemann problems.

13.2 Problem Parameters

The parameters in the Global and Left and Right parameters tables, correspond to the following tests [Kamm],

1. Sod shock tube: The canonical shock tube problem with rarefaction-contact-shock structure; while not a chal-
lenging problem, it quickly identifies algorithmic problems resolving basic wave structure.

2. Einfeldt (or 1-2-3) problem: Consists of two strong rarefaction waves, with a near-vacuum between them;
methods that conserve total energy might show internal energy errors for this problem.

3. Stationary contact problem: Consists of a strong shock wave moving to the right, a stationary contact, and a
strong rarefaction moving to the left; it is based on the left part of the well-known Woodward-Colella problem,
but with the velocity shifted to make the contact stationary, and tests an algorithm’s dissipation by how much
the contact is smeared.

4. Slow shock problem: Consists of a Mach 3 shock wave moving slowly to the right; some numerical methods
exhibit unphysical oscillations behind the shock.

5. Shock-contact-shock problem: When two shocks separate from the initial state, with a contact between them,
errors are producted in all fields, and this problem tests how well an algorithm deals with thos errors; this is
similar to the planar Noh problem but with weaker shocks.

6. LeBlanc problem: A strong shock, strong rarefaction version of the basic rarefaction-contact-shock problem;
it is a good test of a method’s robustness.
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7. Test 7: Explosive products expanding into air (Aslam, 2015), 𝜌𝐿 = 1.84, 𝑝𝐿 = 0.37, 𝑢𝐿 = 0., 𝛾𝐿 = 2.851, and
𝜌𝑅 = 1.𝑒− 3, 𝑝𝑅 = 1.𝑒− 6, 𝑢𝑅 = 0., 𝛾𝑅 = 1.4. Problem extent is [−1, 1] with initial interface at 𝑥 = 0.

Table 13.1: Global parameters for the six Riemann problems.

Test 𝑥𝑖𝑛𝑡 𝑡𝑓𝑖𝑛 𝛾
[cm] [s] [-]

1 0.5 0.25 7/5=1.4
2 0.5 0.15 7/5
3 0.9 0.012 7/5
4 0.5 1.0 7/5
5 0.5 0.3 7/5
6 0.5 0.5 5/3=1.66667

Table 13.2: Parameters for left and right shock tube sections.

Test 𝜌𝐿 𝑢𝐿 𝑝𝐿 𝜌𝑅 𝑢𝑅 𝑝𝑅
[g/cm 3] [cm/s] [dyn/cm 2] [g/cm 3] [cm/s] [dyn/cm 2]

1 1.0 0.0 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 -19.59745 1 × 103 1.0 -19.59745 1 × 10−2

4 3.857143 -0.810631 10.33333 1.0 -3.44 1.0
5 1.0 0.5 1.0 1.25 -0.5 1.0
6 1.0 0.0 (2/3) × 10−1 1 × 10−2 0.0 (2/3) × 10−10

13.3 Initial conditions

Uniform and constant material density, pressure, and velocity on each side of the initial interface (x= xint). Other
states are related through the polytropic EOS: 𝑝 = (𝛾 − 1)𝜌𝑒, where, 𝛾 is the (constant) ratio of specific heats.

13.4 Boundary conditions

Left/right: 𝑥min, 𝑥max: Constant in time

Top/Bottom: 𝑦min, 𝑦max: Reflective

13.5 Mesh

For all problems, 𝑥min = 0.0 and 𝑥max = 1.0 cm; in 2D, 𝑦min = 0.0, 𝑦max = 0.2 cm.

1D: 𝑁𝑥 = 50, 100, 200, 400, 800

2D: (𝑁𝑥, 𝑁𝑦) = (50,10), (100,20), (200,40), (400,80), (800,160)

13.6 Output

In ASCII comma- or space-delimited format1, to include:

1 Sample output available upon request.
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1. Values of density, velocity, pressure, SIE as a function of position at 𝑡0 and 𝑡fin.

2. Entire mesh total energy, kinetic energy, internal energy as a function of time.

13.7 Comparison Domain

1D: 𝑥 ∈ [0, 1]

2D: (𝑥, 𝑦) ∈ [0, 1] × [0, 0.2]

13.8 Extension of the Computational Domain for Moving Walls

The computational domain [0,1] requires an extension to a larger mesh when the wall at either end, 𝑥min = 0 or
𝑥max = 1, is moving, i.e. cases 2 through 5 in Global parameters and Left and Right parameters tables. We denote
the expanded domain by [𝑥𝐿, 𝑥𝑅] with 𝑥𝐿 < 𝑥min < 𝑥int < 𝑥max < 𝑥𝑅. An adequate choice for numerical
implementations of Problems 2-5 is 𝑥𝐿 = −1 and 𝑥𝑅 = 2. Implementation details for specific codes are shown in the
Numerical Setup page.

13.9 Exact Solutions at 𝑡fin

The exact solutions at 𝑡fin for all six Riemann Problems are plotted below:
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CHAPTER

FOURTEEN

NUMERICAL SETUP FOR 1D RIEMANN PROBLEMS

The 1D Riemann Problems require extention to a larger mesh to allow for moving walls, as is discussed in the Riemann
Problems description page.

14.1 Extension of the Computational Domain for Moving Walls

In the 1D Riemann Problems, the computational domain [0,1] requires an extension to a larger mesh when one of the
walls at either end, 𝑥min = 0 or 𝑥max = 1, is moving, i.e. cases 2 through 5 of Global parameters and Left and Right
parameters tables. We denote the expanded domain by [𝑥𝐿, 𝑥𝑅] with 𝑥𝐿 < 𝑥min < 𝑥int < 𝑥max < 𝑥𝑅. Except for
test problem 4, the choice 𝑥𝐿 = −1 and 𝑥𝑅 = 2 is adequate.

14.2 Eulerian Code

We place 𝑛𝑝𝑡𝑠 = 50, 100, 200, 400, 800 points in the computational domain [0, 1]. In problems 2, 3, and 5, we account
for the wall’s motion by extending the computational domain to [−1, 2], and for the slow shock of problem 4 we extend
the grid to [−2, 3]. We place 𝑛𝑝𝑡𝑠 points in each extension of unit length, e.g. [−1, 0] and [1, 2]. For the grid [−1, 2]
this gives a total of 𝑛𝑝𝑡𝑠2 = 3 · npts points in [−1, 2], and for [−2, 3] this gives 𝑛𝑝𝑡𝑠2 = 5 · npts points. Problem 4
also imposes freeze conditions on either extreme of the mesh [−2, 3].

14.3 Lagrangian Code

In problems 2 through 5, we account for the wall’s motion by extending the computational domain from [𝑥min =
0, 𝑥max = 1] to the larger domain [𝑥𝐿 = −1, 𝑥𝑅 = 2]. The domain is partitioned into left and right regions by the
membrane at location 𝑥int. The number of points to in the left and right regions of the computational zone [𝑥min, 𝑥max]
is

𝑁L =

[︂
𝑥int − 𝑥min

𝑥max − 𝑥min
·𝑁K

]︂
𝑁R =

[︂
𝑥max − 𝑥int

𝑥max − 𝑥min
·𝑁K

]︂
,

where the function [𝑥] denotes the greatest integer less than or equal to 𝑥. The number of points between 𝑥L‘𝑎𝑛𝑑 :
𝑚𝑎𝑡ℎ : ‘𝑥min is denoted by 𝑥I, while between 𝑥R and 𝑥max is denoted by 𝑥J. The implementation chooses

𝑁I =

[︂
𝑥L − 𝑥min

𝑥max − 𝑥min
·𝑁K

]︂
𝑁J =

[︂
𝑥R − 𝑥max

𝑥max − 𝑥min
·𝑁K

]︂
,
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giving the total number of points in the left and right extended regions as

𝑁 ext
L = 𝑁L + 𝑁I

𝑁 ext
R = 𝑁R + 𝑁J .
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CHAPTER

FIFTEEN

MADER PROBLEM

15.1 Description

The Mader Problem is a one-dimensional piston-driven detonation wave with a trailing polytropic rarefaction, in which
a slab of high explosive (HE) is initiated on one side and a detonation wave propagates to the other side. The Mader
Problem tests a code’s ability to compute the evolution of the rarefaction behind the burn front and the CJ state at the
detonation front, assuming the detonation wave propagates through a one-dimensional compressible gas.

The Mader Problem is a special case of the detonation wave solution given on page 24 of Ficket and Davis [Fickett].
A detonation wave is driven by a piston moving in the +x direction in a one-dimensional 5 cm slab of gamma-law gas.
A rarefaction (i.e., a Taylor wave) follows the detonation front. The Mader Problem solution is given here in the rest
frame of the pistion. The head of the rarefaction is at the detnoation front and the tail is half-way between the front and
the piston. For detailed analysis see Timmes, et al, [Timmes], and Kirkpatrick, et al [Kirkpatrick], See also [Kamm].

Fig. 15.1: Geometry of the Mader Problem
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15.2 Problem Parameters

The following table gives the constant parameters for Mader Problem. The Initial Conditions section describes the

initial state of the system. The specific reaction enthalpy, 𝑞 =
𝐷2

𝑐𝑗

2(𝛾2−1) , is computed from the values of 𝐷𝑐𝑗 and 𝛾.

Table 15.1: Parameters for the Mader
Problem.

𝑡fin 𝛾 𝐷𝑐𝑗 𝑞
[𝜇𝑠 ] [-] [𝑐𝑚/𝜇𝑠 ] [𝑒𝑟𝑔/𝑔𝑚 ]
6.25 3 0.8 4.0 x 10 10

15.3 Initial Conditions

Initial conditions in Region I are given in the table below. This table represents a nominal initial state in Region I cor-
repsonding to the anaylitic solution given here. The rarefaction solution should be somewhat (or entirely) insensitive
to the initial pressure and sound speed as long as a simulation code is able to sufficiently approximate the given CJ
state directly behind the detonation front, so there may be some freedom to deviate somewhat from this prescription,
if necesssary, for running the Mader Problem on individual codes.

Table 15.2: Initial Conditions for the Mader Prob-
lem.

𝜐0 𝜌0 𝑝0 𝑐0
[𝑐𝑚/𝜇𝑠 ] [g/cm 3] [dyn/cm 2] [𝑐𝑚/𝜇𝑠 ]
−𝜐𝑝𝑖𝑠𝑡𝑜𝑛 1.875 0.0 0.0

15.4 Boundary Conditions

The problem is to be run so that any spurious waves generated by boundary conditions do not affect the solution on
the Comparison Domain defined below. Possible boundary conditions are:

Inner: 𝑋min, 𝑌min, 𝑍min : Symmetric

Outer: 𝑋max, 𝑌max, 𝑍max: Constant in time

15.5 Mesh

Region Boundaries:

The Region is a slab geometry so widths in the Y and Z directions are largely arbitrary (within a reasonable range).
The boundaries in the X-direction are prescribed below,

𝑋min = 0.0, 𝑋max = 5.0 cm;
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15.6 Solution

The simplest CJ theory for piston problems, such as the Mader Problem, is briefly discussed in the Theory Discussion
section below. In this section we just present the solution corresponding to our specific problem description.

In the Mader Problem, there is no explicit reaction chemistry, the reaction zone has zero length and the reaction energy
has a fixed value. The CJ detonation speed is given as a parameter, along with the reaction enthalpy (chemical energy
released), and the initial state ahead of the burn front. Given these parameters and the assumptions of the model, all
of the remaining quantities can be computed analytically. The Hugoniot and CJ state are easly found from the jump
conditions and Rayleigh line; the Euler equations yield a self-similar analytic solution for the Taylor wave behind the
burn front. This is the essence of the Mader Problem.

The structure of the detonation wave in the slab is divided into three regions:

1. Ahead of the shock front, the unburned gas is in a uniform initial state.

2. The rarefaction region, proceeding from the the moving shock front to a terminal point exactly half-way between
the shock front and the piston. This is a consequence of the polytropic assumption with 𝛾 = 3.

3. Between the piston and the rarefaction, the material is in a uniform final state.

At the final time of 6.25𝜇𝑠, the detonation front has reached end of the slab, at 5 cm, and the terminal point of the
rarefaction will be at 2.5 cm. The Hugoniot relations and final-state isentrope determine the CJ state, which is the state
of the reaction products as they exit the detonation front in Region II.

Assuming a 𝛾-law gas, with 𝑝 = (𝛾 − 1)𝜌𝑒, the CJ state is given by

𝑝𝑐𝑗 =
𝜌0𝐷𝑐𝑗

(𝛾 + 1)

𝜌𝑐𝑗 = 𝜌0

(︂
𝛾 + 1

𝛾

)︂
𝑐𝑐𝑗 = 𝐷𝑐𝑗

(︂
𝛾

𝛾 + 1

)︂
𝜐𝑐𝑗 =

𝐷𝑐𝑗

𝛾 + 1

The specific reaction enthalpy, 𝑞, and the postion of the detonation front at time, 𝑡, are given by,

𝑞 =
𝐷2

𝐶𝐽

2(𝛾2 − 1)

𝑥𝑑𝑒𝑡 = 𝐷𝑐𝑗𝑡

In Region I, the material is in the constant initial state given above, but, is assumed moving in the frame of the piston in
the -x direction with speed, 𝜐0 = −𝜐𝑝𝑖𝑠𝑡𝑜𝑛, where 𝜐𝑝𝑖𝑠𝑡𝑜𝑛 is the speed of the piston in the lab frame. Thus, the initial
state in Region I can be chosen to have the following simple form, consistent with the imposed Hugoniot, detonation
speed and chemical energy.

𝜐 = −𝜐𝑝𝑖𝑠𝑡𝑜𝑛

𝑝 = 0.0

𝜌 = 1.857

𝑐 = 0

The rarefaction fan in Region II consists of the set of characteristics, 𝜐 + 𝑐 = 𝑥/𝑡. The flow is self-similar here,
determined only by the ratio, 𝑥/𝑡. The characteristics are bounded between 𝑥/𝑡 = 𝐷𝑐𝑗 , at the detonation front and,
𝑥/𝑡 = 𝐷𝑐𝑗/2, at the tail (for the polytropic case). So, the transition point between tail of the the rarefaction fan and
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the final state at any time is given by 𝑥𝑡𝑎𝑖𝑙 = (1/2)𝐷𝑐𝑗𝑡. Then, the self-similar solution for the Taylor wave in Region
II is found to be,

𝜐 =
(2(𝑥/𝑡) −𝐷𝑐𝑗)

(𝛾 + 1)

𝑝/𝑝𝑐𝑗 =

[︂
1 +

(𝛾 − 1)(𝜐 − 𝜐𝑐𝑗)

2𝑐𝑐𝑗

]︂2𝛾/(𝛾−1)

𝜌 = 𝜌𝑐𝑗(𝑝/𝑝𝑐𝑗)
1/𝛾

𝑐 = 𝑐𝑐𝑗(𝑝/𝑝𝑐𝑗)
(𝛾−1)/2𝛾

The constant final state in Region III, equal to the state at the tail of the rarefaction. Thus we have,

𝜐 = 0

𝑝/𝑝𝑐𝑗 =

[︂
1 − 𝜐𝑐𝑗(𝛾 − 1)

2𝑐𝑐𝑗

]︂2𝛾/(𝛾−1)

𝜌 = 𝜌𝑐𝑗(𝑝/𝑝𝑐𝑗)
1/𝛾

𝑐 = 𝑐𝑐𝑗(𝑝/𝑝𝑐𝑗)
(𝛾−1)/2𝛾

To obtain the solutions above in the lab frame, simply subtract 𝜐𝑝𝑖𝑠𝑡𝑜𝑛 from all of the velocities, e.g.,

𝜐 → (𝜐 − 𝜐𝑝𝑖𝑠𝑡𝑜𝑛)

You will also need to subtract the initial postion of the detonation front from all of the 𝑥 quantities above if you started
the detonation from some postion other than the initial position of the piston.

15.7 Output

In ASCII comma- or space-delimited format,1 to include:

1. Values of pressure density, pressure, material speed as a function of position at 𝑡0 and 𝑡𝑓𝑖𝑛.

2. Entire mesh total pressure density and internal energy as a function of time.

15.8 Comparison Domain

𝑋 ∈ [0, 5]

15.9 Theory Discussion

The Mader Problem is based on the simplest HE detonation theory, as outlined in section 2A of Fickett and Davis
[Fickett]. This theory is based on the following assumptions:

1. One-dimensional flow in a simple polytropic gas expansion.

2. The planar detonation front is a jump discontinuity or shock in which the thermodynamic path is the Rayleigh
line connecting the initial and final states, as determined by the shock Hugoniot of the unreacted HE, modified
by the addition of the full chemical reaction enthalpy.

1 Sample output available upon request.
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3. The chemical reaction is assumed to burn to completion instantaneously, so the reaction products are emerge, in
equilibrium, from the detonation front.

4. The detonation front motion is assumed to to be steady, so the the state of the material emerging from the shock
front is time-independent.

In the simple piston detonation problem, the fuel is assumed to burn instantaneously and completely at the detonation
front, which may be treated as idealized shock front, thus the material in the trailing rarefaction is assumed to consist
entirely of reaction products. Therefore, the reaction enthalpy - the total heat produced by burning the fuel - is simply
added to the energy Hugoniot. Using this to derive the total Hugoinot from the conservation laws, one finds that
the slope of the P-V Hugoniot, which is proportional to 𝐷2

𝑐𝑗 , is only changed by the linear addition of this chemical
energy. Equating the expression for the slope of the P-V Hugoniot with the slope of the Rayleigh line one finds that,
(𝜕𝐸/𝜕𝑣)ℋ = −𝑝, on the Hugoniot. But, this relation also obtains on the isentrope of the reaction products, i.e.,
(𝜕𝐸/𝜕𝑣)𝒮 = −𝑝. Therefore, the CJ state is a special point where the slope is the same for the Rayleigh line, the
Hugoniot and the reaction product isentrope. This slope is proportional to 𝐷2

𝑐𝑗 . This implies that 𝐷𝑐𝑗 is the stable
propagation speed for the detonation wave: If the detonation wave propogates a bit faster than 𝐷𝑐𝑗 , the reaction
products will be moving away from the detonation front faster than the local sound speed, so pressure disturbances
due to the energy released from the reaction will not be able to support the shock wave. Therefore, the detonation
wave should slow down until disturbances from behind “catch up”. On the other hand, if the detonation wave travels
a bit slower than 𝐷𝑐𝑗 , the sound speed for the reaction products will be greater the detonation speed, so pressure
disturbances from the reaction products will overtake it, increasing the shock strength - the pressure and shock speed
- until it reaches 𝐷𝐶𝐽 , at which point 𝑢𝑐𝑗 + 𝑐𝑐𝑗 = 𝐷𝑐𝑗 , i.e, the detonation is exactly sonic in the frame moving with
the detonation front.

15.10 References
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CHAPTER

SIXTEEN

THE BLAKE PROBLEM

16.1 Description

From the conceptual description in [Kamm] as informed by [Blake]:

The Blake problem concerns the spherically symmetric propagation of radial, longitudinal waves from a
cavity of radius, 𝑎, in a homogeneous, isotropic, linear elastic whole space, whose surface is loaded by a
time-dependent normal traction or pressure. When the pressure history, 𝑝(𝑡), is a step function or other
rapid increase in time followed by a suitable decay, the solution has application in modeling the behavior
of an embedded explosive energy source. We consider the simplest case in which the applied pressure
history is a step function at 𝑡 = 0.

This problem tests the hydrocode’s ability to calculate outgoing, spherically divergent elastic wave prop-
agation in the absence of boundary reflections. This includes the code’s ability to accurately simulate the
wave propagation with minimal use of artificial viscosity and to conserve energy well as the physics is
dissipation free.

This is a closed-form, analytical solution (type 2 of [Oberkampf]).

Fig. 16.1: Schematic of the physical arrangement for the Blake problem.
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16.2 Problem Parameters

Table 16.1: Parameters for the Blake prob-
lem.

Parameter Name Default Value
Reference density 𝜌 = 3.0 kg/m3

Shear modulus 𝜇 = 25.0*109 Pa
Poisson ratio 𝜈 = 0.25
Cavity radius (rcav) rcav = 0.1 m
Max. mesh radius router = 1.2 m
Pressure scale P0 = 1.0*106 Pa
Final (snapshot) time tsnap = 1.6*10-4 s

16.3 Linear Elastic Parameters

There are six parameters which are commonly used to characterize an isotropic, linear-elastic solid.

Parameter Name Symbol
First Lame Modulus 𝜆
Shear Modulus (Second Lame Modulus) 𝐺
Young’s Modulus 𝐸
Poisson’s Ratio 𝜈
Bulk Modulus 𝐾
Longitudinal Modulus 𝑀

The Blake solver accepts any two of these to create a solver instance for a particular elastic material. See the solver
documentation for further detail.

16.4 Initial Conditions

Undistorted, unstressed, zero-velocity isotropic linear-elastic material.

16.5 Boundary Conditions

A time-constant pressure (p0) is applied to the cavity surface at 𝑡 = 0. The computational domain outer boundary is
chosen such that the leading edge of the wave structure is well within the domain at tsnap, 𝑟max = 0.9𝑚 < 𝑟outer.

16.6 Mesh (1D spherical)

Domain:

𝑟min = 𝑟cav, 𝑟max = 𝑟outer

Mesh Resolutions:

𝑁zones = 44, 88, 176, 352, 704, ∆𝑟 = 0.025, 0.0125, 0.00625, 0.003125, 0.0015625
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16.7 Output

In ASCII comma- or space-delimited format, to include:

Values of density and pressure, radial, hoop and volumetric stress, strain and stress deviators, as a function of position
at a user-specified 𝑡snap, not greater than the final time indicated in the table.

16.8 Results (default parameters) at 𝑡snap = 1.6 * 10−4 s

0.5 1.0
position

0

50000
pressure

0.5 1.0
position

1000000

0
stress_rr

0.5 1.0
position

0

500000 stress_qq

0.5 1.0
position

0.00002

0.00000

strain_rr
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CHAPTER

SEVENTEEN

THE HUNTER PROBLEM

17.1 Description

From the conceptual description in [Kamm]:

Hunter’s Problem consists of an infinite, uniform, elastic-perfectly-plastic (EPP) medium, containing a
spherical inclusion of radius a about the origin. At initial time (t=0), the boundary of the inclusion
(r=a) is subject to a specified, time-dependent driving pressure P; this driving pressure has a complicated
but closed form, given in [Hunter], which can be evaluated numerically and used to drive a hydrocode
simulation. The specified driving pressure generates elastic-plastic waves such that the boundary between
elastic and plastic deformation moves outward from the cavity wall with constant radial velocity. This
problem is, in some sense, a generalized EPP analogue of the Blake problem [Blake].

This problem tests outgoing, spherically divergent elastic-plastic wave propagation in the absence of
boundary reflections. This includes the interaction between elastic and plastic states at the elastic-plastic
boundary, as well as the dissipation of energy through plastic work.

This is a closed-form, analytical solution (type 2 of [Oberkampf]).

Fig. 17.1: Schematic of physical situation for Hunter’s problem.
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17.2 Problem Parameters

Table 17.1: Parameters for the Hunter problem.

Parameter type Value
Cavity boundary (rcav) a = 100.0 cm
Density 𝜌 = 1.0 g/cm3

Poisson ratio 𝜈 = 1/3
Bulk modulus 𝜅 = 10.0*109 dyne/cm2

Yield strength1 Y = 1.0*108 dyne/cm2

Elastic-plastic interface speed cep = 2.4495*104 cm/s
Final time tsnap = 0.001 s
Max. mesh radius rfinal = 300.0 cm

17.3 Initial Conditions

Uniform, constant, zero-velocity elastic-perfectly-plastic material with a vacuum cavity.

17.4 Boundary Conditions

The closed form solution for the pressure applied at the inner boundary is given in [Hunter]. This is a complicated
form, but is an algebraic closed form. The outer boundary is chosen such that the outgoing wave will not interact.

17.5 Mesh

𝑅min = 100.0, 𝑅max = 300.0 cm; in 1D

Mesh Resolutions:

1D spherical: 𝑁𝑅 = 100, 200, 400, 800, 1600; ∆𝑅 = 2.0, 1.0, 0.5, 0.25, 0.125

17.6 Output

In ASCII comma- or space-delimited format, to include:

1. Values of pressure, radial stress, hoop stress, and deviators for the stresses as a function of position at 𝑡snap.

2. Entire mesh total energy as a function of time.

17.7 Comparison Domain

1D: 𝑅 ∈ [0, 3.0] where the position has been scaled by a.

1 Note that this value is 1/10th the value listed in [Kamm]. This value was chosen due to the assumption of small strain in the original derivation.
Large yield strength results in overdriven solutions.
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17.8 Results at 𝑡snap = 0.001 s

All quantities have been scaled as in [Hunter] with pressure and stress divided by the yield strength. Strain is divided
by the quantity

𝑊 =
yield stress

2 * second Lame constant
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